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Folding processes and solitary waves
in structural geology

B y G. W. Hunt1, H.-B. Mühlhaus2 and A. I. M. Whiting3

1Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
2Division of Exploration and Mining, CSIRO, P.O. Box 437,
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3Connell Wagner, Consulting Engineers, 385 St Paul’s Terrace,
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Evolution of localized folding patterns in layered elastic and visco-elastic materials
is reviewed in the context of compressed geological systems. The thin strut or plate
embedded in a visco-elastic medium is used as an archetypal example to describe
localized buckles which, in contrast to those from earlier formulations, appear in the
absence of triggering imperfections. Structural and material effects are surveyed and
important nonlinear characteristics are identified. A brief review of possible methods
of analysis is conducted.

1. Introduction

The modelling of geological processes spanning perhaps hundreds of millions of years
with well-posed differential equations is fraught with difficulty. There is a consid-
erable gulf between, on the one hand, natural processes undergoing enumerable,
large and small, continuous and discontinuous, influences as time progresses and, on
the other, easily definable regulatory laws. Nonetheless, when an innovative shift in
modelling brings about radical qualitative changes in response, interest is justifiably
raised. The recent burst of interest in concepts of regularity and irregularity (fractals
and chaos) as applied in the earth sciences (Kruhl 1994) is a good example of this
progressive trend.

The process of folding under tectonic compression is an area of structural geology
that is perhaps ready for such development. The pioneering work of Biot (1965)
models such processes with elastic and viscous struts and plates resting on or within
supporting (half-space) media (see figure 5), that themselves are subject to elastic,
viscous, or visco-elastic laws. According to the demands and computing power of
the time, Biot’s modelling was largely restricted to linear differential equations and
periodic harmonic deflected forms thus dominate the response. In a move towards
physical reality, Mühlhaus (Mühlhaus 1993; Mühlaus et al. 1994) later introduced
nonlinear terms associated with controlled end displacements rather than loads, but
the response apparently remained periodic. This contrasts with observations in the
field of more complex phenomena such as spatial localization and quasiperiodicity
(Price & Cosgrove 1990), commonly associated with spatial chaos (Champneys &
Toland 1993; Hunt et al. 1997).
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Such considerations are of real interest to organizations like the CSIRO of Aus-
tralia, as there is known to be a tendency for mineral deposits to leach into areas of
intensified localized folding. This suggests considerable scope for interaction between
research workers of wide-ranging experience and expertise, from field geologists with
knowledge of the constitutive makeup and nature of folding in real rock systems to
numerical analysts at the cutting edge of modern applied mathematics. In such a
broad college there is clearly room for contributions of different orders of complexity
and rigour.

We attempt here an overview of the process of geological folding, with particular
emphasis placed on the emergence of spatial forms that appear as solitary waves
when seen at an instant in a slow evolutionary timeframe. We start from a mod-
elling perspective and in the search for localization place the strut formulation of
Biot (1965) on or within a visco-elastic medium. The elastic component thus allows
an instantaneous or near-instantaneous initial response, followed by a slow evolu-
tion marking dissipation of stored energy into the viscous part of the support. The
simplest mathematical setting for this is a nonlinear partial differential equation
(PDE) that is fourth order in space and first order in time. Moreover, if the sup-
porting medium is a half-space it has a non-local constitutive law and the equation
is integro-differential.

The paper reviews several possible models for the localized folding of geological
structures, from the immediately tractable to the presently intractable, and suggests
a number of possible analytical and numerical approaches, from the heuristic to the
more strictly rigorous. The emphasis is on localized solutions that occur naturally in
‘perfect’ systems, rather than those triggered by initial imperfections or perturbations
that have received considerable attention, both theoretical and experimental, in the
past (see, for example, Cobbold 1975, 1976; Abbasi & Mancktelow 1992; Mancktelow
& Abbasi 1992). The scene is set by results from a crude truncation approach, with
some asymptotic credentials but extended beyond its range of applicabililty. This
foregoes strict rigour for the sake of otherwise unobtainable results and provides
convincing qualitative time portraits. In the absence of rigorous single-dimensional
methods for half-space formulations, it is introduced as a pointer for more respectable
approaches that we hope will follow.

2. Geological evidence

Evidence of folding under in-plane compression appears in a geological context
on many scales. Figure 1 shows a specimen of evaporite some 12 cm in length in
which periodic folding at different wavelengths is clearly visible. Less obvious but
still apparent are decaying fluctuations to the right end of the specimen, which bear
a strong resemblance to the fourth-order homoclinic boundary condition described
by four complex-conjugate eigenvalues seen elsewhere in this special issue (see, for
example, Sandstede, this volume). Localized distortion, either with slowly decaying
tails or severe, as in the box folding of figure 2, is thus a known geological feature.
Evidence of quasi-periodicity also exists, as in figure 3, which demonstrates a number
of interesting structural and material features including further examples of slow
amplitude decay and evidence of folding on different wavelengths. Irregularity and
self-similarity have recently been recognized as integral to the geological setting (Ord
1994). We note that in all of these cases the behaviour is liable to be significantly
influenced by multi-layer (interactive) effects, which we ignore.
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A Typical Fold

Figure 1. Periodic and decaying folds in a specimen of evaporite (courtesy of J. W. Cosgrove,
Imperial College London).

Figure 2. Medium scale box folding seen from the beach at Bude, Cornwall.

Figure 3. Localization and quasi-periodicity in layered Mylor beds at Porthleven, Cornwall.
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Figure 4. Experiments on an axially compressed thin elastic strip within a viscous medium
(after Biot 1965).

3. Modelling considerations

Early attempts to put the folding of geological layers on a firm mathematical
footing came from Biot (1965), who treated in some depth the buckling of elastic
and viscous layers supported on or within elastic and viscous media. Linear dif-
ferential equations were predominantly used and, as a result, periodicity tended to
govern the responses. Spectral decomposition was central to the approach, leading
via the concept of dispersion relations to a focus on the dominant or fastest grow-
ing wavelength of buckle. Experiments performed on elastic strips in a viscous oil,
shown here in figure 4, are less clearly periodic, however, decaying amplitudes also
being apparent. With the evidence also from figures 2 and 3, we can take it that
aperiodicity is an accepted feature in the geological setting. While recent work on
nonlinear elastic foundations has demonstrated the importance of localized solitary
waves (Hunt & Wadee 1991; Champneys & Toland 1993), perfect viscous systems,
even under the nonlinear constraint of fixed end displacement, remain periodic for
all time (Mühlhaus 1993; Mühlhaus et al. 1994); as the compressive load drops to
zero the deflected shape apparently evolves through a sequence of longer and longer
periodic waves to the final result of a single long wave as t→∞.

It has, however, been pointed out by Price & Cosgrove (1990) that neither quan-
titatively nor qualitatively do the calculations from viscous bedding relations match
observed phenomena. Indeed, it is argued that elasticity must be introduced. With
this as our cue, we concentrate in what follows on elastic struts on linear and non-
linear visco-elastic foundations.

(a ) Structural effects
Many types of structural form—struts, plates, shells and domes for instance—

supported by various media, together with single and multi-layered sandwich struc-
tures, blocky structures and other similar archetypes, bear some geological relevance.
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Figure 5. Embedded strut models. (a) Winkler foundation; (b) half-space bed.

Normal structural assumptions, those associated with thin plate or shell theory, for
example, can be called into question. Contact, friction and separation or upheaval
(Hunt & Blackmore, this volume) may play major roles. Here we concentrate on a
thin strut or plate layer supported on or within elastic, viscous or visco-elastic media,
as seen in figure 5. We take a two-dimensional view, with the same form assumed to
extend to infinity in each direction in the third.

A strut made from an elastic material of Young’s modulus E, of unit width, thick-
ness h and cross-sectional second moment of area I, under a compressive load P and
resting on a unspecified bed of vertical resisting force per unit length F , has the
governing equation

EI[w′′′′(1− w′2)−1 + 4w′′′w′′w′(1− w′2)−2 + w′′3(1 + 3w′2)(1− w′2)−3]

+Pw′′(1− w′2)−3/2 + F = 0, (3.1)

where primes denote differentiation with respect to the spatial coordinate x, mea-
sured along the length of the strut as seen in figure 5. If deflections are small, and
hence nonlinear terms can be ignored, this becomes

EIw′′′′ + Pw′′ + F = 0. (3.2)

The single differential equation holds only for the disconnected Winkler foundation of
figure 5a, where resistance to deflection into the bed is strictly local and vertical. For
the infinite half-space of figure 5b, the situation is significantly different. Resistance
now comes from shearing action. A wavy form in the strut causes the bed to shear and
is resisted, but there is no resistance to a constant displacement w over infinite length
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x. This introduces a wavelength dependence to the bed (Biot 1965) and historically
has led to treatment by Fourier analysis.

The modelling implication of such effects is that a fourth-order differential equation
in a single spatial variable x is no longer appropriate. The general half-space implies
that non-local bedding relations are now expected; the force at a point x along the
length depends not just on w at x, but on displacements at points other than x,
and integro-differential equations govern. We note that Winkler foundations find
limited application for granular, and possibly finite-depth, supporting media, but
the half-space is generally considered the more realistic for geological applications.
Other attempts to resolve this difficulty include hybrid supporting media like the
Pasternak foundation (Kerr 1964).

(i) Overburden pressure
If, as in many geological situations, the force F of equations (3.1) and (3.2) contains

a significant component of overburden pressure, at first glance it would seem that a
layer could buckle under such pressure alone; pressure components top and bottom
of the layer would tend to cancel each other, while that at the ends of the layer
apparently provides the compressive force necessary for buckling. This, however,
conflicts with common sense and is overcome by the following reasoning. Consider a
small element dx of a layer of thickness h and unit width, bending through a small
angle dϕ, as shown in figure 6. Under constant pressure p, tensile stretching of one
face combined with compressive shortening of the other leads to an out-of-balance
normal resisting force per unit length,

q =
p(r + 1

2h)dϕ− p(r − 1
2h)dϕ

rdϕ
=
ph

r
, (3.3)

where r is the radius of bending curvature and h is the thickness of the layer. For
the small deflection form of equation (3.2), w′′ = −1/r, and the net effect is to
introduce a term −phw′′ into the governing differential equation that exactly cancels
the perceived compressive force at the ends coming from the overburden pressure.
The same conclusion is reached in a continuum context by Mühlhaus et al. (1998).
The axial load P thus arises entirely from external events like tectonic collision.

(b ) Material effects
The distinction between material and structural behaviour may at times be some-

what blurred, yet it remains a useful exercise to attempt to distinguish between local
constitutive laws and structural response.

(i) Constitutive relations
The most abundant material phases in the Earth’s crust and the upper mantle

are quartz/feldspar and olivine, respectively. They deform permanently by a num-
ber of alternative, often competing, mechanisms, the most important in a geolog-
ical/geophysical context being: (1) diffusional flow (Nabarro-Herring creep, Coble
creep); (2) power-law creep by dislocation glide; (3) collapse at yield strength. Each
can be described by a rate equation relating the strain rate γ̇ to the stress τ , the
temperature T and the structure of the material at that instant (see, for example,
Frost & Ashby 1982; Estrin 1996), where dots denote differentiation with respect to
time. In three-dimensional applications, the rate equations have to be complemented
by a flow rule (in the simplest cases, the Prandtl–Reuss flow rule, see Estrin 1996)
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Figure 6. Elemental system.

and γ̇ and τ are usually defined as

γ̇ = (2DijDij)1/2 and τ = ( 1
2σ
′
ijσ
′
ij)

1/2, (3.4)

where Dij is the stretching and σ′ij is the deviatoric part of Cauchy’s stress tensor
σij . A rate law which captures all of the above mechanisms reads

γ̇ =
a

kT

(
τ

τ0

)n
exp

(
−Q− pV

kT

)
. (3.5)

Here τ0 is the yield strength at zero Kelvin, p = −1
3σkk is the pressure, Q is the

activation energy at p = 0, V is the activation volume for diffusion, k is the Boltz-
mann constant and a is a parameter with the dimension of power which, in general,
is pressure dependent, although this dependency only becomes significant for pres-
sures larger than one tenth of the elastic bulk modulus. Pre-exponential temperature
dependency is also mostly negligible and hence a/kT can be replaced in (3.5) by a
constant reference strain rate γ̇0. The reference stress τ0 may also depend on the
activities of water and of oxygen, aH2O and aO2 , respectively (Hobbs 1981; Ord &
Hobbs 1989), but this dependency is very weak and is probably only important in
zones of high gradients of the activities. If molar values for Q and V are to be used
then k must be replaced by the gas constant R = 8.314 J mol−1 K−1. Typical orders
of magnitude for Q and V are 150–550 kJ mol−1 and 7–30× 10−6 m3 mol−1, respec-
tively. Lithostatic pressures approach Q/V in magnitude only for depths greater
than 700–800 km. Hence, under crustal and upper mantle conditions (roughly taken
as depths of up to 300 km), the pressure dependency of the exponent in (3.5) can
safely be neglected. The power law exponent n is equal to unity for diffusional flow
(Nabarro–Herring creep, Coble creep) and larger than unity for power-law creep,
typical values for crustal and mantle material ranging between 2 < n < 3.

If more detailed analysis of the deformation of geological structures is required,
the influence of elastic deformations in the rate law must be considered. Here we are
concerned with the evolution of buckling folds, which usually take place on spatio-
temporal scales within which the temperature can be regarded as constant. Neglect-
ing the pressure sensitivity as discussed above, the relevant rate law for constant
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temperature reads

γ̇ =
τ̇

µ
+
τ

η
, (3.6)

where µ is the elastic shear modulus, the viscosity η is given by

η =
τ0

γ̇0

(
τ

τ0

)1−n
. (3.7)

For simplicity we assume in the following that n = 1 and

τ = τ̂eωt and γ = γ̂eωt. (3.8)

Inserting into (3.6) and re-arranging yields the relation τ̂ = µ̂γ̂, where

µ̂ =
ωη

1 + ωη/µ
. (3.9)

The material is predominantly elastic if ωη >> µ and predominantly viscous if
ωη << µ.

Biot (1965, p. 419) investigates the folding of an elastic plate in a viscous medium.
The growth coefficient ωd of the fastest growing periodic wave is obtained as

ωd =
σ

6η1

√
σ

µ
, (3.10)

where η1 is the viscosity of the embedding medium, µ is the shear modulus of the
(incompressible) plate material and the axial stress σ = P/h is the driving force of
the instability. Inserting (3.10) into ωη/µ gives the criterion

η

6η1

(
σ

µ

)3/2

>> 1, (3.11)

for predominantly elastic behaviour of the plate during folding.
The single layer folding model considered here comprises a thin, axially pre-stressed

layer embedded in a visco-elastic medium. The early stages of the fold amplitude
evolution can be understood as a small perturbation of the homogeneously stressed
ground state. The tangent shear modulus is obtained in symbolic form as

µ̂ =
µη

∂

∂t

µ+ η
∂

∂t

, (3.12)

where viscosity η is given by (3.7) and τ = σ/(2
√

2) for uniaxial plane strain, σ again
being the magnitude of the axial pre-stress. The instantaneous bending stiffness of
the strut in equation (3.1) is then

EI = 1
3 µ̂h

3. (3.13)

The following section gives an interpretation of such basic rheologies in terms of
structural elements.

(ii) Simplified rheologies
Standard rheological models are available for application in the geological context,

three of the most common being shown in figure 7. The Maxwell fluid of figure 7a,
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Figure 7. Rheological models and associated responses. (a) Maxwell fluid; (b) Kelvin–Voigt
solid; (c) combined fluid.

comprising a spring and dashpot in series, is the most immediately relevant for our
purposes. On application of dead load F it shows an instantaneous elastic displace-
ment in the spring, followed by a constant rate of displacement in the dashpot. On
application of a constant displacement the spring again responds instantly, but over
time gradually unloads into the dashpot such that F falls off exponentially. The
governing differential equation is

ẇ =
1
k
Ḟ +

1
η
F, (3.14)

where k is the spring stiffness and η is the dashpot viscosity (cf. equation (3.6)).
In contrast, the Kelvin–Voigt solid of figure 7b, comprising spring and dashpot in

parallel, has the ability to store strain energy. It is represented by the differential
equation

F = kw + ηẇ. (3.15)
The combined fluid of figure 7c slows down the instantaneous elastic response of the
Maxwell unit, at the expense of a governing differential equation of second order
with the general form

F + p1Ḟ = q1ẇ + q2ẅ, (3.16)
where pi and qi are material constants relating to spring stiffnesses and dashpot
viscosities. These are defined more completely in Roscoe (1950), who shows that a
general arrangement of such linear springs and dashpots can be reduced to one of
two possible canonical forms.

(iii) Nonlinear models
Nonlinearities of many kinds can be introduced to the single dimensional rheolog-

ical models of figure 7. Figure 8 shows three typical types produced by simple geo-
metric effects, all of which can occur naturally. The hardening response of figure 8a
might be associated, for example, with closing of voids in porous medium, while the
softening behaviour of figure 8b is similar to that of the shallow arch (Thompson &
Hunt 1984). The bilinearity of figure 8c is produced by an elastic bifurcation, but
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(a) (b) (c)

Figure 8. Nonlinear elastic models and associated responses: (a) hardening; (b) softening; (c)
bilinear.

in the absence of unloading can be used to mimic elastoplasticity or quasi-brittle
fracture (Hunt & Baker 1995).

For purely elastic systems, nonlinearities can be relatively straightforward to intro-
duce and interpret, but when elastic and viscous parts are present it is necessary to
identify just how the nonlinearity is to enter the modelling process. In an attempt to
reproduce the softening of figure 8b in a Winkler foundation, we might, for example,
introduce F = we − w3

e into the elastic part of the Maxwell element of figure 7a,
we being the displacement in the spring alone; this can be taken either as a simple
cubic law in its own right, or as the leading nonlinear term of a more general power
expansion. The total deflection w is difficult to determine from this perspective, but
is readily obtained if the relation is reversed to give we = F + F 3 + · · · . This more
convenient expansion may, however, have a reduced range of validity; unlike its coun-
terpart it cannot, for instance, represent a response that continues over a maximum
into a regime of negative stiffness (Whiting 1996).

We note in passing that a nonlinearity on the viscous part, or the whole of w as in
Hunt et al. (1996a), would have a growing effect over time. The viscous part would
continue to deflect and involve the nonlinearity to an ever-increasing extent.

(iv) Half-space formulations
Linear and nonlinear rheological models are readily adapted to Winkler founda-

tions but not so easily to a half-space. Biot (1937) took a Fourier expansion for a
general load on the boundary of an elastic half-space,

F (x) =
∞∑
0

qm cos kmx, (3.17)

and passed it through the linear elastic plane strain equation (∇4Φ = 0, where Φ is
a stress function) to obtain a relation between qm and corresponding amplitude of
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displacement am given by

w(x) =
∞∑
0

am cos kmx, (3.18)

as follows

qm = −4µ1kmam, (3.19)

where µ1 is the shear modulus of the foundation material. The appearance of
wavenumber km marks the fact that the resisting force is wavelength dependent,
a feature that is linked to the non-local nature of the bedding support; this con-
trasts directly with the Winkler formulation in which km would be absent. A similar
exercise for a purely viscous foundation of viscosity η1 leads to

qm = −4η1kmȧm (3.20)

and, extending the characteristic of equation (3.6) to the linear Maxwell visco-elastic
half-space (Hunt et al. 1996a),

q̇m + rqm = −4µ1kmȧm, (3.21)

where r = µ1/η1.

(v) Elastica nonlinearities
Mühlhaus (1993) suggests that the natural nonlinearities of large-deflection bend-

ing seen in equation (3.1) generate the following equation in tangent angle ϕ:

ϕ′′′′ + 2ϕ′′ + 3
2ϕ
′2ϕ′′ + F = 0, (3.22)

where Fourier decomposition would, in principle, allow the displacement w in the
Maxwell relation (3.14) to be replaced by ϕ, giving the general non-dimensional
form

Ḟ + F = ϕ̇. (3.23)

Numerical studies of the elastica on Winkler foundation with a Maxwell law, useful
for comparison purposes, are given by Whiting & Hunt (1997).

(c ) Single governing equation
For Winkler media, equation (3.1), or its linearized equivalent (3.2) about w =

F = 0, can be combined simply with constitutive relations such as (3.14) to provide
a single governing PDE in one spatial and one time dimension. For example, if the
compressive load P remains constant, after a little symbolic manipulation of (3.2)
and (3.14), the single equation

EIẇ′′′′ + Pẇ′′ + kẇ +
k

η
(EIw′′′′ + Pw′′) = 0 (3.24)

appears (Hunt et al. 1996a). Half-space formulations are not so straightforward, how-
ever, and lead, in general, to partial integro-differential equations; these are then open
to analysis either by Fourier expansion as described above or by general application
of Green’s theorem. Such approaches work well for linearized systems (Biot 1965)
and possibly also those with slowly varying amplitudes and phase. However, they are
liable to be called into question when thoroughly localized responses are involved.
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Figure 9. Dispersion relation for a strut on a viscous half-space.

4. Methods of analysis

Analytical and numerical methods for solving such differential and integro-
differential equations are now briefly reviewed. Linear and nonlinear systems often
demand quite different analytical approaches.

(a ) Linearized systems
Biot’s (1937) approach, expressed in Fourier transforms using equation (3.20) for

an elastic layer of shear modulus µ and thickness h compressed by a load P and
supported by a viscous half-space of viscosity η1, leads to the dispersion relation of
figure 9, where growth rate ωm is given by the eigenmode, am = Ameωmt. A finite
range of wavelengths is involved, from the infinitely long (km = 0), through the
dominant wavelength of equation (3.10), for which ωm is a maximum,

ωd =
P

6η1
kd, where kd =

1
h

√
P

µh
(4.1)

(Biot 1965), and ending at a P -dependent short wavelength cut-off value. Plotted in
non-dimensional form these curves superimpose on one another (Hunt et al. 1996a)
and so it is possible to remove P from all consideration.

This contrasts with the (non-dimensionalized) dispersion relations for a visco-
elastic medium of viscosity η1 and shear modulus µ1 shown in figure 10. Here the
minimum critical buckling load PC

min and its corresponding mode kmin are given by

PC
min =

6
kmin

µ1, where kmin =
1
h

3

√
6µ1

µ
, (4.2)

p = P/PC
min, k̃m = km/kmin, t̃ = rt, r̃ = r/ωd and ω̃m comes from the eigensolution

am = Ameω̃m t̃, as before. As p approaches the critical elastic buckling value pC = 1,
the rate of growth of the dominant mode amplifies in a kind of resonance phe-
nomenon, until at the critical load it grows infinitely fast and expresses the instan-
taneous elastic response in the critical buckling mode.

(b ) Nonlinear systems
Dispersion relations are by their nature linear concepts, being based on compar-

isons between simple spectral components of the displacement pattern; interactions
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(a) (b)

Figure 10. Dispersion relation for a strut on a visco-elastic half-space.

between components are never considered. Linear equations are never able to describe
the evolution of localized forms that is of primary concern here: when such nonlin-
ear features are involved, quite different analytical and numerical tools are required
(see, for example, Beyn 1990; Champneys & Toland 1993). The added complexity of
wavelength dependence, associated with the concept of a half-space, is again based
on spectral decomposition and linear in concept. Nonlinear analysis can, however,
sometimes draw on such a view by extending it in the sequential asymptotic sense, as,
for example, in the use of harmonic fluctuations with slowly varying amplitude, phase
and indeed wavelength. Provided the nonlinearities are polynomial and of moderate
order, Fourier transformation methods are known to work well for viscous media
(Mühlhaus et al. 1998), but are less useful for the severe localization associated with
brittle (fracturing) structures.

(i) Trial functions
Trial functions, as seen, for example, in Galerkin or Rayleigh–Ritz formulations,

might prove useful in overcoming problems of wavelength dependence; wavelengths
are built in to the modelling process and have the potential to vary (see, for example,
Wadee et al. 1997). However, Galerkin procedures involving wavelength variation are
yet to be successfully devised for such problems, whereas Rayleigh–Ritz procedures
depend on conservation of energy which is contravened for visco-elastic foundations.
Although it is felt that useful analytical approaches could develop from such proce-
dures, at present, under the banner of trial function methods, there only exists, as
far as we are aware, a crude truncation approach (Hunt et al. 1996a). Results from
this process should be treated with caution, taken over finite time perhaps merely as
qualitative pointers towards possible behaviour; it does, however, provide reasonably
convincing time portraits.

The process is described fully in Hunt et al. (1996a) and summarized in Hunt et
al. (1996b). Under the constraint of constant end-shortening, trial functions are fed
into a governing nonlinear PDE with a zero right-hand side, and enough coefficients
of the resulting set of functions put to zero to match a number, typically seven,
unknown variables. A simple marching algorithm then gives the evolution over time.
Figure 11 shows a typical output based on the PDE

ẇ′′′′ + 3pẇ′′ + ˙[2β(w − w3)] + (w′′′′ + 3pw′′) = 0. (4.3)

Wavelength dependence is represented by the explicit appearance of β, as defined by
the trial function

w = A sechαx cosβx+B sechαx tanhαx sinβx
+Cx sechαx sinβx+Dx sechαx tanhαx cosβx. (4.4)
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Figure 11. Seven-variable evolution of a localized shape under constant end displacement. Based
on the elastic strut of equation (3.2) on a visco-elastic half-space with EI = 1, P = 3p and
F = 2β(w − w3). (See Hunt et al. 1996a.)

The free variables are A, B, C, D, α, β and p. Six first-order ODEs in time arise
from setting the coefficients of sechαx cosβx, sechαx tanhαx sinβx, sech3 αx cosβx,
sech3 αx tanhαx sinβx, x sechαx sinβx and x sechαx tanhαx cosβx to zero, with
the seventh coming from the constraint of constant end-shortening. As the load p
drops to zero, the localized wave pattern opens out to release the bending strain
energy of the elastic strut into the foundation. The eventual outcome, not portrayed
here, is a single long wave which, if length is taken to infinity, has zero amplitude.

(ii) Numerical methods
In the modern context, numerical methods provide the most obvious way of tack-

ling the nonlinear governing equations that arise in modelling of geological systems.
Yet there is little published work of which we are aware that relates directly to
the solitary waveforms of interest here. Typically, although nonlinearities and local-
ization are now routinely considered, the latter is usually taken in the sense of a
thorough localization, as in brittle or quasi-brittle fracture (Baz̆ant & Cedolin 1991;
Leroy & Triantafillydis 1996). There remain a number of fundamental problems to
be addressed. It is generally accepted in geological circles that half-space formula-
tions are the most credible, but these carry the penalty of non-local regulatory laws
leading in the first instance to integro-differential equations. In the linear context
such equations can be reduced to wavelength dependent PDEs as discussed above
(Biot 1965), but for station-based approaches such as the collocation method this
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is numerically awkward; the equation to be solved depends on the solution. Green’s
function methods suggest one possible way forward, yet these too are limited by
being linear in concept.

The expansive alternative is to introduce a second spatial dimension as in a finite
element (FE) formulation, but with time providing a third dimension this is like-
ly to be expensive in computing power. Such formulations are popular (Lewis &
Williams 1978; Williams et al. 1978) but may be problematical (Cobbold 1977).
They inevitably suffer from the fact that a plate or a strut is long and thin, and
must be subdivided into many elements to achieve the necessary accuracy for short
wavelength deformation. The supporting medium, where deformation is minimal,
would then require subdivision into something like n2 (or n3) elements, n being the
number of beam elements. A combination of FE and boundary elements might prove
more efficient, but boundary elements only work well if the nonlinearity in the sup-
porting medium is unimportant. FE formulation might also require remeshing at
larger amplitudes, because of mesh distortion. One recent relevant thesis is due to
Breekman (1994), who models lithospheric and crustal elasto-viscoplastic deforma-
tion using finite elements.

We note finally that it is certainly possible that the problem is suited to analysis
by wavelets, but this approach is yet to be explored. A second promising alternative
is a particle-based, as opposed to mesh-based, approach to discretization (Mühlhaus
& Hornby 1996).

5. Concluding remarks

The paper emphasizes that nonlinear PDEs and integro-differential equations lie
at the heart of the problem of geological folding. The field is in its infancy: Winkler
foundations can be formulated, but the more relevant half-space has not apparently
been tackled rigorously in the nonlinear range. Where material softening is involved,
it is demonstrated that spatial localization is likely to be central to the response
over time. Trial function methods supply perhaps the best analytical way forward;
the relatively short length scales and long time scales involved suggest that space
and time may be able to be handled separately. Likely also to be significant to
real geological systems are constitutive laws with hardening responses, or those that
initially soften followed by hardening. Quasi-periodicity, seen in the field but not
part of the present description, would then naturally enter the frame; such matters
are, however, out of the remit of this special issue.

The review generally raises more questions than it answers. It is worthy of note
that a recent UK EPSRC grant under the Applied Nonlinear Mathematics Initiative,
to address some of the matters raised, commenced in January 1997.

Financial support for A.I.M.W. was generously provided by the University of Sydney, Australia,
and the Overseas Research Students (ORS) Award Scheme, UK.
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Mühlhaus, H.-B., Hobbs, B. E. & Ord, A. 1994 The role of axial constraints on the evolu-
tion of folds in single layers. In Computer methods and advances in geomechanics (ed. H. J.
Siriwardane & M. M. Zaman), vol. 1, pp. 223–231. Rotterdam: Balkema.

Mühlhaus, H.-B., Sakaguchi, H. & Hobbs, B. E. 1998 Evolution of 3D folds for a non-Newtonian
layer in a viscous medium. Proc. R. Soc. Lond. A. (In the press.)

Ord, A. 1994 The fractal geometry of patterned structures in numerical models of rock formation.
In Fractals and dynamic systems in geoscience (ed. J. H. Kruhl). Berlin: Springer.

Ord, A. & Hobbs, B. E. 1989 The strength of the continental crust, detachment zones and the
development of plastic instabilities. Tectonophys. 158, 269–289.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Folding processes and solitary waves in structural geology 2213

Price, N. J. & Cosgrove, J. W. 1990 Analysis of geological structures. Cambridge University
Press.

Roscoe, R. 1950 Mechanical models for the representation of visco-elastic properties. Br. J.
Appl. Phys. 1, 171–173.

Thompson, J. M. T. & Hunt, G. W. 1984 Elastic instability phenomena. Chichester: Wiley.
Wadee, M. K., Hunt, G. W. & Whiting, A. I. M. 1997 Asymptotic and Rayleigh–Ritz routes

to localized buckling solutions in an elastic instability problem. Proc. R. Soc. Lond. A 453,
2085–2107.

Whiting, A. I. M. 1996 Localized buckling of an elastic strut in a visco-elastic medium. Ph.D.
thesis, Imperial College, University of London.

Whiting, A. I. M. & Hunt, G. W. 1997 Evolution of nonperiodic forms in geological folds. Math.
Geol. 29, 705–723.

Williams, J. R., Lewis, R. W. & Zienkiewicz, O. C. 1978 A finite-element analysis of the role of
initial perturbations in the folding of a single viscous layer. Tectonophys. 45, 187–200.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/

